3.107 \(\int \csc (e+f x) (a+b \tan ^2(e+f x))^{3/2} \, dx\)

Optimal. Leaf size=127 \[ -\frac{a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a} \sec (e+f x)}{\sqrt{a+b \sec ^2(e+f x)-b}}\right )}{f}+\frac{b \sec (e+f x) \sqrt{a+b \sec ^2(e+f x)-b}}{2 f}+\frac{\sqrt{b} (3 a-b) \tanh ^{-1}\left (\frac{\sqrt{b} \sec (e+f x)}{\sqrt{a+b \sec ^2(e+f x)-b}}\right )}{2 f} \]

[Out]

-((a^(3/2)*ArcTanh[(Sqrt[a]*Sec[e + f*x])/Sqrt[a - b + b*Sec[e + f*x]^2]])/f) + ((3*a - b)*Sqrt[b]*ArcTanh[(Sq
rt[b]*Sec[e + f*x])/Sqrt[a - b + b*Sec[e + f*x]^2]])/(2*f) + (b*Sec[e + f*x]*Sqrt[a - b + b*Sec[e + f*x]^2])/(
2*f)

________________________________________________________________________________________

Rubi [A]  time = 0.140676, antiderivative size = 127, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.304, Rules used = {3664, 416, 523, 217, 206, 377, 207} \[ -\frac{a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a} \sec (e+f x)}{\sqrt{a+b \sec ^2(e+f x)-b}}\right )}{f}+\frac{b \sec (e+f x) \sqrt{a+b \sec ^2(e+f x)-b}}{2 f}+\frac{\sqrt{b} (3 a-b) \tanh ^{-1}\left (\frac{\sqrt{b} \sec (e+f x)}{\sqrt{a+b \sec ^2(e+f x)-b}}\right )}{2 f} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]*(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

-((a^(3/2)*ArcTanh[(Sqrt[a]*Sec[e + f*x])/Sqrt[a - b + b*Sec[e + f*x]^2]])/f) + ((3*a - b)*Sqrt[b]*ArcTanh[(Sq
rt[b]*Sec[e + f*x])/Sqrt[a - b + b*Sec[e + f*x]^2]])/(2*f) + (b*Sec[e + f*x]*Sqrt[a - b + b*Sec[e + f*x]^2])/(
2*f)

Rule 3664

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Sec[e + f*x], x]}, Dist[1/(f*ff^m), Subst[Int[((-1 + ff^2*x^2)^((m - 1)/2)*(a - b + b*ff^2*x^2)^p)/x^(
m + 1), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rule 416

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1)*(c
 + d*x^n)^(q - 1))/(b*(n*(p + q) + 1)), x] + Dist[1/(b*(n*(p + q) + 1)), Int[(a + b*x^n)^p*(c + d*x^n)^(q - 2)
*Simp[c*(b*c*(n*(p + q) + 1) - a*d) + d*(b*c*(n*(p + 2*q - 1) + 1) - a*d*(n*(q - 1) + 1))*x^n, x], x], x] /; F
reeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && NeQ[n*(p + q) + 1, 0] &&  !IGtQ[p, 1] && IntB
inomialQ[a, b, c, d, n, p, q, x]

Rule 523

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \csc (e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\left (a-b+b x^2\right )^{3/2}}{-1+x^2} \, dx,x,\sec (e+f x)\right )}{f}\\ &=\frac{b \sec (e+f x) \sqrt{a-b+b \sec ^2(e+f x)}}{2 f}+\frac{\operatorname{Subst}\left (\int \frac{2 a^2-3 a b+b^2+(3 a-b) b x^2}{\left (-1+x^2\right ) \sqrt{a-b+b x^2}} \, dx,x,\sec (e+f x)\right )}{2 f}\\ &=\frac{b \sec (e+f x) \sqrt{a-b+b \sec ^2(e+f x)}}{2 f}+\frac{a^2 \operatorname{Subst}\left (\int \frac{1}{\left (-1+x^2\right ) \sqrt{a-b+b x^2}} \, dx,x,\sec (e+f x)\right )}{f}+\frac{((3 a-b) b) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a-b+b x^2}} \, dx,x,\sec (e+f x)\right )}{2 f}\\ &=\frac{b \sec (e+f x) \sqrt{a-b+b \sec ^2(e+f x)}}{2 f}+\frac{a^2 \operatorname{Subst}\left (\int \frac{1}{-1+a x^2} \, dx,x,\frac{\sec (e+f x)}{\sqrt{a-b+b \sec ^2(e+f x)}}\right )}{f}+\frac{((3 a-b) b) \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{\sec (e+f x)}{\sqrt{a-b+b \sec ^2(e+f x)}}\right )}{2 f}\\ &=-\frac{a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a} \sec (e+f x)}{\sqrt{a-b+b \sec ^2(e+f x)}}\right )}{f}+\frac{(3 a-b) \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sec (e+f x)}{\sqrt{a-b+b \sec ^2(e+f x)}}\right )}{2 f}+\frac{b \sec (e+f x) \sqrt{a-b+b \sec ^2(e+f x)}}{2 f}\\ \end{align*}

Mathematica [B]  time = 4.81574, size = 418, normalized size = 3.29 \[ \frac{\sec ^2\left (\frac{1}{2} (e+f x)\right ) \sec (e+f x) \sqrt{\sec ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)} \left (-4 a^{3/2} \cos ^2(e+f x) \tanh ^{-1}\left (\frac{a-(a-2 b) \tan ^2\left (\frac{1}{2} (e+f x)\right )}{\sqrt{a} \sqrt{a \left (\tan ^2\left (\frac{1}{2} (e+f x)\right )-1\right )^2+4 b \tan ^2\left (\frac{1}{2} (e+f x)\right )}}\right )-4 a^{3/2} \cos ^2(e+f x) \tanh ^{-1}\left (\frac{a \left (\tan ^2\left (\frac{1}{2} (e+f x)\right )-1\right )+2 b}{\sqrt{a} \sqrt{a \left (\tan ^2\left (\frac{1}{2} (e+f x)\right )-1\right )^2+4 b \tan ^2\left (\frac{1}{2} (e+f x)\right )}}\right )+\sqrt{2} b \cos (e+f x) \sqrt{\sec ^4\left (\frac{1}{2} (e+f x)\right ) ((a-b) \cos (2 (e+f x))+a+b)}+\sqrt{2} b \sqrt{\sec ^4\left (\frac{1}{2} (e+f x)\right ) ((a-b) \cos (2 (e+f x))+a+b)}-4 \sqrt{b} (b-3 a) \cos ^2(e+f x) \tanh ^{-1}\left (\frac{\sqrt{b} \left (\tan ^2\left (\frac{1}{2} (e+f x)\right )+1\right )}{\sqrt{a \left (\tan ^2\left (\frac{1}{2} (e+f x)\right )-1\right )^2+4 b \tan ^2\left (\frac{1}{2} (e+f x)\right )}}\right )\right )}{8 f \sqrt{\sec ^4\left (\frac{1}{2} (e+f x)\right ) ((a-b) \cos (2 (e+f x))+a+b)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]*(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

(Sec[(e + f*x)/2]^2*(-4*Sqrt[b]*(-3*a + b)*ArcTanh[(Sqrt[b]*(1 + Tan[(e + f*x)/2]^2))/Sqrt[4*b*Tan[(e + f*x)/2
]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2]]*Cos[e + f*x]^2 - 4*a^(3/2)*ArcTanh[(a - (a - 2*b)*Tan[(e + f*x)/2]^2)/(S
qrt[a]*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2])]*Cos[e + f*x]^2 - 4*a^(3/2)*ArcTanh[(2*b
+ a*(-1 + Tan[(e + f*x)/2]^2))/(Sqrt[a]*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2])]*Cos[e +
 f*x]^2 + Sqrt[2]*b*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])*Sec[(e + f*x)/2]^4] + Sqrt[2]*b*Cos[e + f*x]*Sqrt[
(a + b + (a - b)*Cos[2*(e + f*x)])*Sec[(e + f*x)/2]^4])*Sec[e + f*x]*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])*S
ec[e + f*x]^2])/(8*f*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])*Sec[(e + f*x)/2]^4])

________________________________________________________________________________________

Maple [B]  time = 0.164, size = 1249, normalized size = 9.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)*(a+b*tan(f*x+e)^2)^(3/2),x)

[Out]

-1/4/f/a^(5/2)/b^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/cos(f*x+e)^2)^(3/2)*4^(1/2)*cos(f*x+e)*(cos(f*x+e)-1
)^3*(3*arctanh(1/8*b^(1/2)*4^(1/2)*(cos(f*x+e)-1)*(cos(f*x+e)*4^(1/2)-2*cos(f*x+e)-4^(1/2)-2)/sin(f*x+e)^2/((a
*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2))*a^(7/2)*cos(f*x+e)^2*b+4*ln(-4/a^(1/2)*(cos(f*x+e)-1)
*(cos(f*x+e)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)+((a*
cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2)*b^(7/2)*cos(f*x+e)^2*a-4*ln(-2
/a^(1/2)*(cos(f*x+e)-1)*(cos(f*x+e)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)-cos(f*x
+e)*a+b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2)*b^(7/2)
*cos(f*x+e)^2*a-arctanh(1/8*b^(1/2)*4^(1/2)*(cos(f*x+e)-1)*(cos(f*x+e)*4^(1/2)-2*cos(f*x+e)-4^(1/2)-2)/sin(f*x
+e)^2/((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2))*a^(5/2)*cos(f*x+e)^2*b^2-6*cos(f*x+e)^2*ln(-
4/a^(1/2)*(cos(f*x+e)-1)*(cos(f*x+e)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)-cos(f*
x+e)*a+b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2)*b^(5/2
)*a^2+6*cos(f*x+e)^2*ln(-2/a^(1/2)*(cos(f*x+e)-1)*(cos(f*x+e)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1
)^2)^(1/2)*a^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2
)+b)/sin(f*x+e)^2)*b^(5/2)*a^2+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(5/2)*b^(3/2)*cos(
f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(5/2)*b^(3/2)-cos(f*x+e)^2*ln(-2/a^(1/2)*(
cos(f*x+e)-1)*(cos(f*x+e)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)-cos(f*x+e)*a+b*co
s(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2)*b^(1/2)*a^4-cos(f
*x+e)^2*ln(-4*(cos(f*x+e)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+cos(f*x+e)*a-b*co
s(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/(cos(f*x+e)-1))*b^(1/2)*a^4)/si
n(f*x+e)^6/((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}} \csc \left (f x + e\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*tan(f*x + e)^2 + a)^(3/2)*csc(f*x + e), x)

________________________________________________________________________________________

Fricas [A]  time = 7.21928, size = 1905, normalized size = 15. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[1/4*(2*a^(3/2)*cos(f*x + e)*log(-2*((a - b)*cos(f*x + e)^2 - 2*sqrt(a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(
f*x + e)^2)*cos(f*x + e) + a + b)/(cos(f*x + e)^2 - 1)) - (3*a - b)*sqrt(b)*cos(f*x + e)*log(-((a - b)*cos(f*x
 + e)^2 - 2*sqrt(b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + 2*b)/cos(f*x + e)^2) + 2*
b*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(f*cos(f*x + e)), -1/2*((3*a - b)*sqrt(-b)*arctan(sqrt(-b
)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/b)*cos(f*x + e) - a^(3/2)*cos(f*x + e)*log(-2
*((a - b)*cos(f*x + e)^2 - 2*sqrt(a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + a + b)/(
cos(f*x + e)^2 - 1)) - b*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(f*cos(f*x + e)), 1/4*(4*sqrt(-a)*
a*arctan(sqrt(-a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/a)*cos(f*x + e) - (3*a - b)*s
qrt(b)*cos(f*x + e)*log(-((a - b)*cos(f*x + e)^2 - 2*sqrt(b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)
*cos(f*x + e) + 2*b)/cos(f*x + e)^2) + 2*b*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(f*cos(f*x + e))
, 1/2*(2*sqrt(-a)*a*arctan(sqrt(-a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/a)*cos(f*x
+ e) - (3*a - b)*sqrt(-b)*arctan(sqrt(-b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/b)*co
s(f*x + e) + b*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(f*cos(f*x + e))]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)*(a+b*tan(f*x+e)**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}} \csc \left (f x + e\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate((b*tan(f*x + e)^2 + a)^(3/2)*csc(f*x + e), x)